skip to main content


Search for: All records

Creators/Authors contains: "Barsanti, Stefania"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    Slow rotator galaxies are distinct amongst galaxy populations, with simulations suggesting that a mix of minor and major mergers are responsible for their formation. A promising path to resolve outstanding questions on the type of merger responsible, is by investigating deep imaging of massive galaxies for signs of potential merger remnants. We utilize deep imaging from the Subaru-Hyper Suprime Cam Wide data to search for tidal features in massive [log10(M*/M⊙) > 10] early-type galaxies (ETGs) in the SAMI Galaxy Survey. We perform a visual check for tidal features on images where the galaxy has been subtracted using a Multi-Gauss Expansion (MGE) model. We find that 31$^{+2}_{-2}$ per cent of our sample show tidal features. When comparing galaxies with and without features, we find that the distributions in stellar mass, light-weighted mean stellar population age, and H${\alpha}$ equivalent width are significantly different, whereas spin ($\lambda _{R_{\rm {e}}}$), ellipticity, and bulge-to-total ratio have similar distributions. When splitting our sample in age, we find that galaxies below the median age (10.8 Gyr) show a correlation between the presence of shells and lower $\lambda _{R_{\rm {e}}}$, as expected from simulations. We also find these younger galaxies which are classified as having ‘strong’ shells have lower $\lambda _{R_{\rm {e}}}$. However, simulations suggest that merger features become undetectable within ∼2–4 Gyr post-merger. This implies that the relationship between tidal features and merger history disappears for galaxies with older stellar ages, i.e. those that are more likely to have merged long ago.

     
    more » « less
  2. ABSTRACT

    Most dynamical models of galaxies to date assume axisymmetry, which is not representative of a significant fraction of massive galaxies. We have built triaxial orbit-superposition Schwarzschild models of galaxies observed by the SAMI Galaxy Survey, in order to reconstruct their inner orbital structure and mass distribution. The sample consists of 153 passive galaxies with total stellar masses in the range 109.5 to $10^{12} \, {\rm M}_{\odot }$. We present an analysis of the internal structures and intrinsic properties of these galaxies as a function of their environment. We measure their environment using three proxies: central or satellite designation, halo mass and local 5th nearest neighbour galaxy density. We find that although these intrinsic properties correlate most strongly with stellar mass, environment does play a secondary role: at fixed stellar mass, galaxies in the densest regions are more radially anisotropic. In addition, central galaxies, and galaxies in high local densities show lower values of edge-on spin parameter proxy λRe, EO. We also find suggestions of a possible trend of the fractions of orbits with environment for lower mass galaxies (between 109.5 and $10^{11} \, {\rm M}_{\odot }$) such that, at fixed stellar mass, galaxies in higher local densities and halo mass have higher fractions of hot orbits and lower fractions of warm orbits. Our results demonstrate that after stellar mass, environment does play a role in shaping present-day passive galaxies.

     
    more » « less
  3. ABSTRACT

    We study the alignments of galaxy spin axes with respect to cosmic web filaments as a function of various properties of the galaxies and their constituent bulges and discs. We exploit the SAMI Galaxy Survey to identify 3D spin axes from spatially resolved stellar kinematics and to decompose the galaxy into the kinematic bulge and disc components. The GAMA survey is used to reconstruct the cosmic filaments. The mass of the bulge, defined as the product of stellar mass and bulge-to-total flux ratio Mbulge = M⋆ × (B/T), is the primary parameter of correlation with spin–filament alignments: galaxies with lower bulge masses tend to have their spins parallel to the closest filament, while galaxies with higher bulge masses are more perpendicularly aligned. M⋆ and B/T separately show correlations, but they do not fully unravel spin–filament alignments. Other galaxy properties, such as visual morphology, stellar age, star formation activity, kinematic parameters, and local environment, are secondary tracers. Focussing on S0 galaxies, we find preferentially perpendicular alignments, with the signal dominated by high-mass S0 galaxies. Studying bulge and disc spin–filament alignments separately reveals additional information about the formation pathways of the corresponding galaxies: bulges tend to have more perpendicular alignments, while discs show different tendencies according to their kinematic features and the mass of the associated bulge. The observed correlation between the flipping of spin–filament alignments and the growth of the bulge can be explained by mergers, which drive both alignment flips and bulge formation.

     
    more » « less
  4. ABSTRACT

    Using data from the SAMI Galaxy Survey, we investigate the correlation between the projected stellar kinematic spin vector of 1397 SAMI galaxies and the line-of-sight motion of their neighbouring galaxies. We calculate the luminosity-weighted mean velocity difference between SAMI galaxies and their neighbours in the direction perpendicular to the SAMI galaxies’ angular momentum axes. The luminosity-weighted mean velocity offset between SAMI galaxies and neighbours, which indicates the signal of coherence between the rotation of the SAMI galaxies and the motion of neighbours, is 9.0 ± 5.4 km s−1 (1.7σ) for neighbours within 1 Mpc. In a large-scale analysis, we find that the average velocity offsets increase for neighbours out to 2 Mpc. However, the velocities are consistent with zero or negative for neighbours outside 3 Mpc. The negative signals for neighbours at a distance around 10 Mpc are also significant at the ∼2σ level, which indicate that the positive signals within 2 Mpc might come from the variance of large-scale structure. We also calculate average velocities of different subsamples, including galaxies in different regions of the sky, galaxies with different stellar masses, galaxy type, λRe, and inclination. Although subsamples of low-mass, high-mass, early-type, and low-spin galaxies show the 2–3σ signal of coherence for the neighbours within 2 Mpc, the results for different inclination subsamples and large-scale results suggest that the ∼2σ signals might result from coincidental scatter or variance of large-scale structure. Overall, the modest evidence of coherence signals for neighbouring galaxies within 2 Mpc needs to be confirmed by larger samples of observations and simulation studies.

     
    more » « less
  5. ABSTRACT

    We study environmental quenching using the spatial distribution of current star formation and stellar population ages with the full SAMI Galaxy Survey. By using a star formation concentration index [C-index, defined as log10(r50, H α/r50, cont)], we separate our sample into regular galaxies (C-index ≥−0.2) and galaxies with centrally concentrated star formation (SF-concentrated; C-index <−0.2). Concentrated star formation is a potential indicator of galaxies currently undergoing ‘outside-in’ quenching. Our environments cover ungrouped galaxies, low-mass groups (M200 ≤ 1012.5M⊙), high-mass groups (M200 in the range 1012.5–14 M⊙) and clusters (M200 > 1014M⊙). We find the fraction of SF-concentrated galaxies increases as halo mass increases by 9 ± 2 per cent, 8 ± 3 per cent, 19 ± 4 per cent, and 29 ± 4 per cent for ungrouped galaxies, low-mass groups, high-mass groups, and clusters, respectively. We interpret these results as evidence for ‘outside-in’ quenching in groups and clusters. To investigate the quenching time-scale in SF-concentrated galaxies, we calculate light-weighted age (AgeL) and mass-weighted age (AgeM) using full spectral fitting, as well as the Dn4000 and HδA indices. We assume that the average galaxy age radial profile before entering a group or cluster is similar to ungrouped regular galaxies. At large radius (1–2 Re), SF-concentrated galaxies in high-mass groups have older ages than ungrouped regular galaxies with an age difference of 1.83 ± 0.38 Gyr for AgeL and 1.34 ± 0.56 Gyr for AgeM. This suggests that while ‘outside-in’ quenching can be effective in groups, the process will not quickly quench the entire galaxy. In contrast, the ages at 1–2 Re of cluster SF-concentrated galaxies and ungrouped regular galaxies are consistent (difference of 0.19 ± 0.21 Gyr for AgeL, 0.40 ± 0.61 Gyr for AgeM), suggesting the quenching process must be rapid.

     
    more » « less
  6. ABSTRACT

    We investigate the mean locally measured velocity dispersions of ionized gas (σgas) and stars (σ*) for 1090 galaxies with stellar masses $\log \, (M_{\!\ast }/M_{\odot }) \ge 9.5$ from the SAMI Galaxy Survey. For star-forming galaxies, σ* tends to be larger than σgas, suggesting that stars are in general dynamically hotter than the ionized gas (asymmetric drift). The difference between σgas and σ* (Δσ) correlates with various galaxy properties. We establish that the strongest correlation of Δσ is with beam smearing, which inflates σgas more than σ*, introducing a dependence of Δσ on both the effective radius relative to the point spread function and velocity gradients. The second strongest correlation is with the contribution of active galactic nuclei (AGN) (or evolved stars) to the ionized gas emission, implying that the gas velocity dispersion is strongly affected by the power source. In contrast, using the velocity dispersion measured from integrated spectra (σap) results in less correlation between the aperture-based Δσ (Δσap) and the power source. This suggests that the AGN (or old stars) dynamically heat the gas without causing significant deviations from dynamical equilibrium. Although the variation of Δσap is much smaller than that of Δσ, a correlation between Δσap and gas velocity gradient is still detected, implying that there is a small bias in dynamical masses derived from stellar and ionized gas velocity dispersions.

     
    more » « less